Files
libgtop/kernel/table21/module.c
Martin Baulig 9248d72018 Using text_rss', shlib_rss', data_rss' and dirty_size' instead of
1998-08-12  Martin Baulig  <martin@home-of-linux.org>

	* include/glibtop/procsegment.h (glibtop_proc_segment): Using
	`text_rss', `shlib_rss', `data_rss' and `dirty_size' instead of
	`tsr', `lrs', `drs' and `dt'. New field `stack_rss'.

	* sysdeps/linux/procmem.c: Memory sizes now correctly in bytes.
	* sysdeps/linux/procsegment.c: Dito.

	* sysdeps/kernel/procsegment.c: Stack pages are reported via
	`stack_rss' and no longer count towards `data_rss'
	* kernel/table.h (table_proc_segment): Added `srs' field.
	* kernel/table21/module.c (TBL_PROC_SEGMENT): Added kernel support
	for this.

	* sysdeps/{linux, kernel, stub}/procmap.c: New files.
1998-08-12 20:16:24 +00:00

567 lines
15 KiB
C

/*
* linux/table/table_impl.c
* Copyright (C) 1998 Martin Baulig
*/
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/tty.h>
#include <linux/user.h>
#include <linux/a.out.h>
#include <linux/string.h>
#include <linux/mman.h>
#include <linux/proc_fs.h>
#include <linux/ioport.h>
#include <linux/config.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/slab.h>
#include <linux/smp.h>
#include <linux/signal.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/io.h>
#include <linux/module.h>
#include <linux/table.h>
#include "version.h"
extern int (*table_function_ptr) (int, union table *, const void *);
int table_fkt (int, union table *, const void *);
EXPORT_NO_SYMBOLS;
int
init_module(void)
{
printk ("init_module () = %p - %d, %d\n",
table_fkt, sizeof (union table), sizeof (sigset_t));
table_function_ptr = table_fkt;
return 0;
}
void
cleanup_module(void)
{
table_function_ptr = 0;
}
#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
#ifdef CONFIG_DEBUG_MALLOC
int get_malloc(char * buffer);
#endif
static void collect_sigign_sigcatch(struct task_struct *p, sigset_t *ign,
sigset_t *catch)
{
struct k_sigaction *k;
int i;
sigemptyset(ign);
sigemptyset(catch);
#if 0
printk ("collect_sigign_sigcatch: %p - %p\n",
p, p->sig);
#endif
if (p->sig) {
k = p->sig->action;
for (i = 1; i <= _NSIG; ++i, ++k) {
#if 0
printk ("signal: %d - %p (%p, %p)\n",
i, k->sa.sa_handler, SIG_IGN, SIG_DFL);
#endif
if (k->sa.sa_handler == SIG_IGN)
sigaddset(ign, i);
else if (k->sa.sa_handler != SIG_DFL)
sigaddset(catch, i);
}
}
}
/*
* These bracket the sleeping functions..
*/
extern void scheduling_functions_start_here(void);
extern void scheduling_functions_end_here(void);
#define first_sched ((unsigned long) scheduling_functions_start_here)
#define last_sched ((unsigned long) scheduling_functions_end_here)
static unsigned long get_wchan(struct task_struct *p)
{
if (!p || p == current || p->state == TASK_RUNNING)
return 0;
#if defined(__i386__)
{
unsigned long ebp, eip;
unsigned long stack_page;
int count = 0;
stack_page = 4096 + (unsigned long)p;
if (!stack_page)
return 0;
ebp = p->tss.ebp;
do {
if (ebp < stack_page || ebp >= 4092+stack_page)
return 0;
eip = *(unsigned long *) (ebp+4);
if (eip < first_sched || eip >= last_sched)
return eip;
ebp = *(unsigned long *) ebp;
} while (count++ < 16);
}
#elif defined(__alpha__)
/*
* This one depends on the frame size of schedule(). Do a
* "disass schedule" in gdb to find the frame size. Also, the
* code assumes that sleep_on() follows immediately after
* interruptible_sleep_on() and that add_timer() follows
* immediately after interruptible_sleep(). Ugly, isn't it?
* Maybe adding a wchan field to task_struct would be better,
* after all...
*/
{
unsigned long schedule_frame;
unsigned long pc;
pc = thread_saved_pc(&p->tss);
if (pc >= first_sched && pc < last_sched) {
schedule_frame = ((unsigned long *)p->tss.ksp)[6];
return ((unsigned long *)schedule_frame)[12];
}
return pc;
}
#elif defined(__mc68000__)
{
unsigned long fp, pc;
unsigned long stack_page;
int count = 0;
extern int sys_pause (void);
stack_page = p->kernel_stack_page;
if (!stack_page)
return 0;
fp = ((struct switch_stack *)p->tss.ksp)->a6;
do {
if (fp < stack_page || fp >= 4088+stack_page)
return 0;
pc = ((unsigned long *)fp)[1];
/* FIXME: This depends on the order of these functions. */
if (pc < first_sched || pc >= last_sched)
return pc;
fp = *(unsigned long *) fp;
} while (count++ < 16);
}
#elif defined(__powerpc__)
return (p->tss.wchan);
#elif defined (CONFIG_ARM)
{
unsigned long fp, lr;
unsigned long stack_page;
int count = 0;
stack_page = 4096 + (unsigned long)p;
fp = get_css_fp (&p->tss);
do {
if (fp < stack_page || fp > 4092+stack_page)
return 0;
lr = pc_pointer (((unsigned long *)fp)[-1]);
if (lr < first_sched || lr > last_sched)
return lr;
fp = *(unsigned long *) (fp - 12);
} while (count ++ < 16);
}
#endif
return 0;
}
#if defined(__i386__)
# define KSTK_EIP(tsk) (((unsigned long *)(4096+(unsigned long)(tsk)))[1019])
# define KSTK_ESP(tsk) (((unsigned long *)(4096+(unsigned long)(tsk)))[1022])
#elif defined(__alpha__)
/*
* See arch/alpha/kernel/ptrace.c for details.
*/
# define PT_REG(reg) (PAGE_SIZE - sizeof(struct pt_regs) \
+ (long)&((struct pt_regs *)0)->reg)
# define KSTK_EIP(tsk) \
(*(unsigned long *)(PT_REG(pc) + PAGE_SIZE + (unsigned long)(tsk)))
# define KSTK_ESP(tsk) ((tsk) == current ? rdusp() : (tsk)->tss.usp)
#elif defined(CONFIG_ARM)
# define KSTK_EIP(tsk) (((unsigned long *)(4096+(unsigned long)(tsk)))[1022])
# define KSTK_ESP(tsk) (((unsigned long *)(4096+(unsigned long)(tsk)))[1020])
#elif defined(__mc68000__)
#define KSTK_EIP(tsk) \
({ \
unsigned long eip = 0; \
if ((tsk)->tss.esp0 > PAGE_SIZE && \
MAP_NR((tsk)->tss.esp0) < max_mapnr) \
eip = ((struct pt_regs *) (tsk)->tss.esp0)->pc; \
eip; })
#define KSTK_ESP(tsk) ((tsk) == current ? rdusp() : (tsk)->tss.usp)
#elif defined(__powerpc__)
#define KSTK_EIP(tsk) ((tsk)->tss.regs->nip)
#define KSTK_ESP(tsk) ((tsk)->tss.regs->gpr[1])
#elif defined (__sparc_v9__)
# define KSTK_EIP(tsk) ((tsk)->tss.kregs->tpc)
# define KSTK_ESP(tsk) ((tsk)->tss.kregs->u_regs[UREG_FP])
#elif defined(__sparc__)
# define KSTK_EIP(tsk) ((tsk)->tss.kregs->pc)
# define KSTK_ESP(tsk) ((tsk)->tss.kregs->u_regs[UREG_FP])
#endif
/* Gcc optimizes away "strlen(x)" for constant x */
#define ADDBUF(buffer, string) \
do { memcpy(buffer, string, strlen(string)); \
buffer += strlen(string); } while (0)
static inline void statm_pte_range(pmd_t * pmd, unsigned long address, unsigned long size,
int * pages, int * shared, int * dirty, int * total)
{
pte_t * pte;
unsigned long end;
if (pmd_none(*pmd))
return;
if (pmd_bad(*pmd)) {
printk("statm_pte_range: bad pmd (%08lx)\n", pmd_val(*pmd));
pmd_clear(pmd);
return;
}
pte = pte_offset(pmd, address);
address &= ~PMD_MASK;
end = address + size;
if (end > PMD_SIZE)
end = PMD_SIZE;
do {
pte_t page = *pte;
address += PAGE_SIZE;
pte++;
if (pte_none(page))
continue;
++*total;
if (!pte_present(page))
continue;
++*pages;
if (pte_dirty(page))
++*dirty;
if (MAP_NR(pte_page(page)) >= max_mapnr)
continue;
if (atomic_read(&mem_map[MAP_NR(pte_page(page))].count) > 1)
++*shared;
} while (address < end);
}
static inline void statm_pmd_range(pgd_t * pgd, unsigned long address, unsigned long size,
int * pages, int * shared, int * dirty, int * total)
{
pmd_t * pmd;
unsigned long end;
if (pgd_none(*pgd))
return;
if (pgd_bad(*pgd)) {
printk("statm_pmd_range: bad pgd (%08lx)\n", pgd_val(*pgd));
pgd_clear(pgd);
return;
}
pmd = pmd_offset(pgd, address);
address &= ~PGDIR_MASK;
end = address + size;
if (end > PGDIR_SIZE)
end = PGDIR_SIZE;
do {
statm_pte_range(pmd, address, end - address, pages, shared, dirty, total);
address = (address + PMD_SIZE) & PMD_MASK;
pmd++;
} while (address < end);
}
static void statm_pgd_range(pgd_t * pgd, unsigned long address, unsigned long end,
int * pages, int * shared, int * dirty, int * total)
{
while (address < end) {
statm_pmd_range(pgd, address, end - address, pages, shared, dirty, total);
address = (address + PGDIR_SIZE) & PGDIR_MASK;
pgd++;
}
}
int
table_fkt (int type, union table *buf, const void *param)
{
union table tbl;
struct sysinfo i;
struct task_struct *tsk = NULL;
sigset_t sigign, sigcatch;
int index, tindex, err;
pid_t pid;
if (type == TABLE_VERSION)
return _TABLE_VERSION;
if (!buf)
return -EFAULT;
memset (&tbl, 0, sizeof (union table));
/* For TABLE_PROC_*, read pid and get task_struct */
switch (type) {
case TABLE_PROC_UID:
case TABLE_PROC_MEM:
case TABLE_PROC_SEGMENT:
case TABLE_PROC_TIME:
case TABLE_PROC_STATE:
case TABLE_PROC_SIGNAL:
case TABLE_PROC_KERNEL:
err = verify_area (VERIFY_READ, param, sizeof (pid_t));
if (err)
return err;
copy_from_user (&pid, param, sizeof (pid_t));
read_lock (&tasklist_lock);
tsk = find_task_by_pid (pid);
/* FIXME!! This should be done after the last use */
read_unlock(&tasklist_lock);
if (tsk == NULL)
return -ESRCH;
break;
}
/* Main function dispatcher */
switch (type) {
case TABLE_PROCLIST:
tsk = task [0];
read_lock (&tasklist_lock);
for (index = tindex = 0; index < nr_tasks; index++) {
if (tsk->pid)
tbl.proclist.pids [tindex++] = tsk->pid;
tsk = tsk->next_task;
}
tbl.proclist.nr_running = nr_running;
tbl.proclist.last_pid = last_pid;
tbl.proclist.nr_tasks = tindex;
read_unlock(&tasklist_lock);
break;
case TABLE_CPU:
tbl.cpu.total = jiffies;
tbl.cpu.user = kstat.cpu_user;
tbl.cpu.nice = kstat.cpu_nice;
tbl.cpu.sys = kstat.cpu_system;
tbl.cpu.idle = tbl.cpu.total -
(tbl.cpu.user + tbl.cpu.nice + tbl.cpu.sys);
tbl.cpu.frequency = HZ;
break;
case TABLE_MEM:
si_meminfo (&i);
tbl.mem.total = i.totalram;
tbl.mem.used = i.totalram - i.freeram;
tbl.mem.free = i.freeram;
tbl.mem.shared = i.sharedram;
tbl.mem.buffer = i.bufferram;
tbl.mem.cached = page_cache_size << PAGE_SHIFT;
break;
case TABLE_SWAP:
si_swapinfo (&i);
tbl.swap.total = i.totalswap;
tbl.swap.used = i.totalswap - i.freeswap;
tbl.swap.free = i.freeswap;
break;
case TABLE_LOADAVG:
tbl.loadavg.loadavg [0] = (double) avenrun [0] / (1 << FSHIFT);
tbl.loadavg.loadavg [1] = (double) avenrun [1] / (1 << FSHIFT);
tbl.loadavg.loadavg [2] = (double) avenrun [2] / (1 << FSHIFT);
tbl.loadavg.nr_running = nr_running;
tbl.loadavg.nr_tasks = nr_tasks;
tbl.loadavg.last_pid = last_pid;
break;
case TABLE_UPTIME:
tbl.uptime.uptime = jiffies;
tbl.uptime.idle = task[0]->times.tms_utime +
task[0]->times.tms_stime;
break;
case TABLE_PROC_STATE:
tbl.proc_state.state = tsk->state;
tbl.proc_state.flags = tsk->flags;
memcpy (tbl.proc_state.comm, tsk->comm,
sizeof (tbl.proc_state.comm));
break;
case TABLE_PROC_UID:
tbl.proc_uid.uid = tsk->uid;
tbl.proc_uid.euid = tsk->euid;
tbl.proc_uid.suid = tsk->suid;
tbl.proc_uid.fsuid = tsk->fsuid;
tbl.proc_uid.gid = tsk->gid;
tbl.proc_uid.egid = tsk->egid;
tbl.proc_uid.sgid = tsk->sgid;
tbl.proc_uid.fsgid = tsk->fsgid;
tbl.proc_uid.pid = tsk->pid;
tbl.proc_uid.pgrp = tsk->pgrp;
tbl.proc_uid.ppid = tsk->p_pptr->pid;
tbl.proc_uid.session = tsk->session;
tbl.proc_uid.tty = tsk->tty ?
kdev_t_to_nr (tsk->tty->device) : 0;
tbl.proc_uid.tpgid = tsk->tty ? tsk->tty->pgrp : -1;
tbl.proc_uid.priority = tsk->priority;
tbl.proc_uid.counter = tsk->counter;
tbl.proc_uid.def_priority = DEF_PRIORITY;
break;
case TABLE_PROC_SIGNAL:
memcpy (&tbl.proc_signal.signal, &tsk->signal,
sizeof (tbl.proc_signal.signal));
memcpy (&tbl.proc_signal.blocked, &tsk->blocked,
sizeof (tbl.proc_signal.blocked));
collect_sigign_sigcatch (tsk, &sigign, &sigcatch);
memcpy (&tbl.proc_signal.ignored, &sigign,
sizeof (tbl.proc_signal.ignored));
memcpy (&tbl.proc_signal.caught, &sigcatch,
sizeof (tbl.proc_signal.caught));
#if 0
printk ("PROC_SIGNAL: (%lu, %lu) - (%lu, %lu)\n",
tbl.proc_signal.ignored.sig [0],
tbl.proc_signal.ignored.sig [1],
tbl.proc_signal.caught.sig [0],
tbl.proc_signal.caught.sig [1]);
#endif
break;
case TABLE_PROC_MEM:
if (tsk->mm && tsk->mm != &init_mm) {
tbl.proc_mem.context = tsk->mm->context;
tbl.proc_mem.start_code = tsk->mm->start_code;
tbl.proc_mem.end_code = tsk->mm->end_code;
tbl.proc_mem.start_data = tsk->mm-> start_data;
tbl.proc_mem.end_data = tsk->mm->end_data;
tbl.proc_mem.start_brk = tsk->mm->start_brk;
tbl.proc_mem.brk = tsk->mm->brk;
tbl.proc_mem.start_stack = tsk->mm->start_stack;
tbl.proc_mem.start_mmap = tsk->mm->mmap ?
tsk->mm->mmap->vm_start : 0;
tbl.proc_mem.arg_start = tsk->mm->arg_start;
tbl.proc_mem.arg_end = tsk->mm->arg_end;
tbl.proc_mem.env_start = tsk->mm->env_start;
tbl.proc_mem.env_end = tsk->mm->env_end;
tbl.proc_mem.rss = tsk->mm->rss << PAGE_SHIFT;
tbl.proc_mem.total_vm = tsk->mm->total_vm;
tbl.proc_mem.locked_vm = tsk->mm->locked_vm;
}
tbl.proc_mem.rlim = tsk->rlim ? tsk->rlim[RLIMIT_RSS].rlim_cur : 0;
break;
case TABLE_PROC_SEGMENT:
if (tsk->mm && tsk->mm != &init_mm) {
unsigned long vsize = 0;
int size = 0, resident = 0, share = 0;
int trs = 0, lrs = 0, drs = 0, srs = 0, dt = 0;
struct vm_area_struct * vma = tsk->mm->mmap;
while (vma) {
pgd_t *pgd = pgd_offset(tsk->mm, vma->vm_start);
int pages = 0, shared = 0, dirty = 0, total = 0;
vsize += vma->vm_end - vma->vm_start;
statm_pgd_range (pgd, vma->vm_start, vma->vm_end,
&pages, &shared, &dirty, &total);
resident += pages;
share += shared;
dt += dirty;
size += total;
/* Well, shared library seem to get mapped
* above 0x40000000 and are executable,
* so I use this hack to get their size.
*/
if (vma->vm_flags & VM_GROWSDOWN)
srs += pages; /* stack */
else if ((vma->vm_flags & VM_EXEC) &&
(vma->vm_start > 0x40000000))
lrs += pages; /* library */
else if (vma->vm_flags & VM_EXECUTABLE)
trs += pages; /* text */
else
drs += pages;
vma = vma->vm_next;
}
tbl.proc_segment.vsize = vsize;
tbl.proc_segment.size = size << PAGE_SHIFT;
tbl.proc_segment.resident = resident << PAGE_SHIFT;
tbl.proc_segment.shared = share << PAGE_SHIFT;
tbl.proc_segment.trs = trs << PAGE_SHIFT;
tbl.proc_segment.lrs = lrs << PAGE_SHIFT;
tbl.proc_segment.drs = drs << PAGE_SHIFT;
tbl.proc_segment.srs = srs << PAGE_SHIFT;
tbl.proc_segment.dt = dt << PAGE_SHIFT;
}
break;
case TABLE_PROC_TIME:
tbl.proc_time.utime = tsk->times.tms_utime;
tbl.proc_time.stime = tsk->times.tms_stime;
tbl.proc_time.cutime = tsk->times.tms_cutime;
tbl.proc_time.cstime = tsk->times.tms_cstime;
tbl.proc_time.start_time = tsk->start_time;
tbl.proc_time.timeout = tsk->timeout;
tbl.proc_time.policy = tsk->policy;
tbl.proc_time.rt_priority = tsk->rt_priority;
tbl.proc_time.it_real_value = tsk->it_real_value;
tbl.proc_time.it_prof_value = tsk->it_prof_value;
tbl.proc_time.it_virt_value = tsk->it_virt_value;
tbl.proc_time.it_real_incr = tsk->it_real_incr;
tbl.proc_time.it_prof_incr = tsk->it_prof_incr;
tbl.proc_time.it_virt_incr = tsk->it_virt_incr;
break;
case TABLE_PROC_KERNEL:
tbl.proc_kernel.min_flt = tsk->min_flt;
tbl.proc_kernel.cmin_flt = tsk->cmin_flt;
tbl.proc_kernel.maj_flt = tsk->maj_flt;
tbl.proc_kernel.cmaj_flt = tsk->cmaj_flt;
tbl.proc_kernel.kesp = KSTK_EIP(tsk);
tbl.proc_kernel.keip = KSTK_ESP(tsk);
tbl.proc_kernel.nswap = tsk->nswap;
tbl.proc_kernel.cnswap = tsk->cnswap;
tbl.proc_kernel.wchan = get_wchan (tsk);
break;
default:
return -EINVAL;
}
err = verify_area (VERIFY_WRITE, buf, sizeof (struct table));
if (err)
return err;
copy_to_user (buf, &tbl, sizeof (union table));
return 0;
}